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Controlling synchrony in oscillatory networks with a separate
stimulation-registration setup

K. Pyragas
1,2,3
, O. V. Popovych

3 and P. A. Tass3,4,5

1 Semiconductor Physics Institute - 01108 Vilnius, Lithuania
2Department of Theoretical Physics, Faculty of Physics of Vilnius University - 10222 Vilnius, Lithuania
3 Institute of Neurosciences and Biophysics 3, Medicine and Virtual Institute of Neuromodulation,
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Abstract – We present a demand-controlled method for desynchronization of globally coupled
oscillatory networks utilizing a configuration with an observed and stimulated subsystem. The
stimulated subsystem is subjected to a proportional-integro-differential (PID) feedback derived
from the mean field of the observed subsystem. Our method enables to restore desynchronized
states in both subsystems in a robust way. We develop an analytical theory for the Kuramoto
model and analytically derive a threshold of the stimulation parameters for the desynchronization
transition in ensembles of phase and van der Pol oscillators. We also numerically demonstrate the
efficacy of the approach for ensembles of globally coupled Landau-Stuart and relaxation van der
Pol oscillators. Our approach is particularly important for applications to physical and biological
systems which do not allow for a simultaneous registration and stimulation of the whole network,
as in the case of electrical brain stimulation.

Copyright c© EPLA, 2007

Introduction. – Synchronization is an important
phenomenon in physical, chemical, and biological
systems [1–5]. In the brain, communication within and
between neuronal populations is mediated by synchro-
nization processes [6]. Conversely, extremely strong
synchronization may severely impair brain function. For
instance, Parkinsonian tremor is caused by the synchro-
nization of oscillatory neurons located in the thalamus
and basal ganglia [7], which under healthy conditions fire
in an uncorrelated manner [8].
Electrical deep brain stimulation (DBS) is the standard

therapy for medically refractory movements disorders,
e.g., Parkinson’s disease and essential tremor [9,10]. In
DBS, electrical high-frequency (>100Hz) stimulation is
permanently delivered via depth electrodes located in
affected target areas. DBS has been developed empirically
and appears to strongly manipulate the neuronal firing,
e.g., by blocking neuronal action [10]. DBS may cause side
effects, and its therapeutic effect may be limited or may
decrease over time [11]. Hence, there is a significant clinical
need for less invasive stimulation techniques, which restore

desynchronized —i.e., normal [8]— dynamics in networks
of oscillatory neurons [12].
Accordingly, stimulation techniques have been devel-

oped which effectively desynchronize oscillatory networks
by utilizing phase resetting principles [12–14] or delayed
feedback stimulation [15–20]. For applications to biologi-
cal systems it is essential that desynchronization is robust
against variations of system parameters. Significant time
variations of the neurons’ frequency are, e.g., observed
in DBS target areas [21]. Multisite coordinated reset
stimulation [14], linear multisite delayed feedback [16,17],
and nonlinear delayed feedback [18,19] effectively desyn-
chronize and are robust against parameter variations.
While the coordinated reset requires repetitive stimulus
administration, the feedback techniques work at minimal
stimulation intensities.
However, concerning the applicability of feedback

methods, there is still a fundamental problem. Desyn-
chronization can effectively be achieved, provided that
(nearly) the whole network can be registered and
stimulated, as shown previously [15,16,18,22]. But in
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certain experimental systems it is impossible to register
and stimulate the whole network at the same time. In
DBS, e.g., the stimulation current exceeds the measured
neuronal currents by several orders of magnitude, so that
measurements are corrupted by strong artifacts [23].
To overcome this issue, we split the whole population of

coupled oscillators into two separate subpopulations, one
being exclusively measured and the other being exclu-
sively stimulated (see also refs. [17,19], where, in contrast
to the present study, a drive-response coupling scheme
of populations has been considered). This leads to a
considerably more difficult control problem as considered
formerly. The feedback control algorithms discussed so far
in the literature [15,16,18] fail if they are applied to oscil-
latory networks with a separate stimulation-registration
setup. In contrast, we here use the proportional-integro-
differential (PID) feedback control technique, which
is widely accepted in the classical control theory, but
has not yet been applied to such a desynchronization
issue. By using the mean-field signal of the measured
subpopulation as PID feedback and delivering it to the
stimulated subpopulation, we achieve a robust desynchro-
nization of the whole network, at minimal stimulation
intensity. Oscillatory neuronal activity is characteristic
for Parkinson’s disease [7,8]. To capture this fundamental
dynamical feature, we here model a periodically active
neuron in a normal-form type approach by means of a
Landau-Stuart or a phase oscillator and, hence, a neuronal
population by a network of N globally coupled limit-cycle
and phase oscillators [1,24–26]. We demonstrate the
efficacy of our approach for ensembles of globally coupled
Landau-Stuart and (as an extension) relaxation van der
Pol oscillators and derive a theory for the Kuramoto
model of phase oscillators. We analytically classify regions
in the parameter space, where the stimulation results in
a robust desynchronization of both subpopulations.

PD control of globally coupled Landau-Stuart
oscillators. – Consider an ensemble of N globally
coupled and stimulated Landau-Stuart oscillators, repre-
senting a normal form of a supercritical Andronov-Hopf
bifurcation

żj = (iωj +1− |zj |2)zj +KZ, j = 1, 2, . . . , N1,
żj = (iωj +1− |zj |2)zj +KZ +S(t), j =N1+1, . . . , N.

(1)

The individual oscillators zj = xj + iyj , j = 1, . . . , N with-
out coupling (K = 0) and without stimulation (S(t) = 0)
perform a uniform rotation around the origin with the
natural frequencies ωj and amplitudes 1. The oscillators

are globally coupled via the mean field Z =N−1
∑N
k=1 zk

with the coupling strength K. The whole population is
split into two sub-populations of N1 and N2 =N −N1
units. The oscillators j = 1, . . . , N1 of the first subsystem
are not exposed to the control perturbation and serve as an
observable subsystem. The oscillators j =N1+1, . . . , N of

Fig. 1: Mean fields of the observed (ReZ1) and stimulated
(ReZ2) subsystem of the ensemble of oscillators (1) for N1 =
N2 = 500, K = 0.5, P = 2, and D= 4. The frequencies {ωj} are
Gaussian distributed with deviation σ= 0.2 around the mean
frequency Ω= 0.2. The arrows indicate the onset of coupling
(K) and stimulation (PD).

the second subsystem are stimulated with a proportional-
differential (PD) feedback signal

S(t) = PZ1(t)+DŻ1(t), (2)

where we suppose that an observable signal is the mean

field of the first subsystem Z1 =N
−1
1

∑N1
k=1 zk. The para-

meters P and D define the strength of the proportional
and differential feedback, respectively. Note, as will be
shown below, if the coupling in the ensemble is rather
weak, the desynchronization can be achieved by applying
the proportional feedback only. In contrast, in the case of
strong coupling the stimulation signal must also contain
the differential feedback for robust desynchronization.
Numerical results presented in fig. 1 show the dynamics

of the mean fields Z1 and Z2 =N
−1
2

∑N
k=N1+1

zk of the
separated subsystems of ensemble (1) in three successive
stages: i) without coupling and control (K = P =D= 0),
ii) with coupling but without control (K �= 0, P =D= 0),
and iii) in the presence of both coupling and control
(K �= 0, P �= 0, D �= 0). In the first stage small fluctua-
tions of the mean fields are related to the finite-size effect.
Switching on the coupling leads to a spontaneous synchro-
nization characterized by a large amplitude of the mean
field. Then, after additionally switching on the PD control,
the oscillators desynchronize, and the mean fields of both
subsystems become again small, as they were without
coupling. As soon as the desired desynchronized state is
achieved, the observable signal Z1 vanishes and thus the
stimulation signal S(t) vanishes as well, which demon-
strates the noninvasive character of the suggested control
technique. Another important issue of the control is that
the stimulation does not destroy the natural oscillatory
activity of the individual elements of the ensemble. In the
stimulation regime, the current mean frequencies ωj of the
individual oscillators differ from the natural frequencies ωj
by a value of the order 10−3. Thus the stimulation prac-
tically restores the frequencies of the oscillators to their
natural ones.

Analytical treatment for the Kuramoto model.
– To explore the main properties of the PD control
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algorithm, we investigate the phase dynamics of the
ensemble (1). Substituting in eq. (1) zj = ρje

iθj and
neglecting the dynamics of the amplitudes ρj , one obtains
the following equation for the phases θj :

θ̇j = ωj +
K

N

N∑
k=1

sin(θk − θj)−H(j−N1)Fj , (3a)

Fj =
P

N1

N1∑
k=1

sin(θk − θj)+ D
N1

N1∑
k=1

θ̇k cos(θk − θj). (3b)

Here Fj is the corresponding phase representation of the
above stimulation signal S and H(·) is the Heaviside
function defined asH(k) = 0 if k� 0 andH(k) = 1 if k > 0.
Without stimulation (Fj = 0), eq. (3a) transforms to

the classical Kuramoto model [1]. We assume that the
frequencies ωj are randomly chosen from a symmetric
probability density g(ω), g(Ω+ω) = g(Ω−ω), where Ω
is the mean frequency. Then the critical coupling of
spontaneous synchronization is given by [1,2]

K0 = 2/πg(Ω). (4)

For K <K0, the system relaxes to an incoherent state,
where all oscillators are not synchronized, but for K >K0,
mutual synchronization occurs in a group of oscillators.
Our aim is to define the synchronization threshold in

the presence of the PD control signal Fj . We characterize
the synchronization by the complex order parameters

r1e
iψ1 =

1

N1

N1∑
k=1

eiθk , r2e
iψ2 =

1

N2

N∑
k=N1+1

eiθk , (5)

where r1,2 measure the phase coherence of the population
in each subsystem. These parameters vary in the interval
[0, 1] such that small values of r1,2 indicate the incoherent
state while values close to 1 represent the strong mutual
synchronization in each subsystem. The synchronization in
the whole system can be characterized by the total order
parameter reiψ =N−1

∑N
k=1 e

iθk . To solve the problem
analytically we write the system (3) in the infinite-N limit.
For convenience, we choose a coordinate system rotating
with the mean frequency Ω. Then the density g(ω) has
zero mean, and eq. (3b) transforms to

Fj =
P

N1

N1∑
k=1

sin(θk − θj)+ D
N1

N1∑
k=1

(θ̇k +Ω) cos(θk − θj).

(6)

We consider each oscillator as a particle moving around
a cycle. For each frequency ω, let ρω1,2(θ, t) denote the
density of oscillators at angle θ at time t in the subsystem
marked by the subscript, and let vω1,2(θ, t) denote the local
phase velocity of an oscillator also considered at angle θ
and at time t in the corresponding subsystem (see ref. [27]
and below). Then the densities ρω1,2 satisfy the continuity
equations

∂

∂t
ρω1,2(θ, t) =−

∂

∂θ

[
ρω1,2(θ, t)v

ω
1,2(θ, t)

]
, (7)

which express conservation of oscillators of frequency ω in
each subsystem. The velocities vω1,2(θ, t) read

vω1 (θ, t)= ω+K

∫ 2π
0

∫ ∞
−∞
sin(θ′− θ)[n1ρω′1 (θ′, t)

+ n2ρ
ω′
2 (θ

′, t)]g(ω′) dω′dθ′,

vω2 (θ, t)= v
ω
1 (θ, t)−

∫ 2π
0

∫ ∞
−∞
ρω

′
1 (θ

′, t)[P sin(θ′− θ)

+ D(vω
′
1 (θ

′, t)+Ω) cos(θ′− θ))]g(ω′) dω′dθ′,
where n1,2 =N1,2/N denotes the relative number of oscil-
lators in the first and second subsystems such that n1+
n2 = 1. Here in the continuum limit N →∞ we have
replaced the sums in eqs. (3) by integrals. Similarly, in
the limit N →∞ the above order parameters (5) become

r1,2e
iψ1,2 =

∫ 2π
0

∫ ∞
−∞
eiθρω1,2(θ, t)g(ω) dωdθ. (8)

This yields a system of nonlinear integro-partial-
differential equations for ρω1,2. We also require ρ

ω
1,2 to be

positive, 2π periodic in θ with
∫ 2π
0
ρω1,2(θ, t)dθ= 1.

The incoherent state with the vanishing order para-
meters r1,2 = 0 is characterized by uniform distributions
ρω1,2(θ)≡ 1/2π. We use the substitution

ρω1,2(θ, t) = 1/2π+ c1,2(ω, t)e
iθ +c.c. + h.h., (9)

to analyze the linear stability of this fixed point. Here
c1,2 are coefficients of the Fourier expansion of the densi-
ties ρ1,2, and the abbreviations “c.c.” and “h.h.” stand
for “complex conjugate” and “higher harmonics,” respec-
tively. The perturbation is written in this way because
the order parameters r1,2 depend only on c1,2, but not on
higher harmonics, and the linearized amplitude equations
for c1,2 decouple from the other harmonics (cf. ref. [2]):

∂c1/∂t=−iωc1+K[n1R1(t)+n2R2(t)]/2, (10)

∂c2/∂t =−iωc2+K[(n1−D/2+ iDΩ)R1(t)
+ (n2−D/2)R2(t)]/2+ iDR3(t)/2. (11)

Here we have introduced the functions

Rk(t) =

∫ ∞
−∞
ck(ω, t)g(ω)dω, k= 1, 2, 3, (12)

with the auxiliary coefficient c3(ω, t)≡ ωc1(ω, t). The
dynamics of the order parameters are given by

r1,2(t) = 2π|R1,2(t)|. (13)

For a slim notation we use the vectors: c≡ (c1 c2 c3)T ,R≡
(R1R2R3)

T . For any initial conditions c(ω, 0)≡ c0(ω), via
the Laplace transform we obtain

R(t) =
1

2πi

∫
Γ

[I3−A(s)g∗(s)]−1(c0g)∗(s)estds (14)
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as solution of eqs. (10)–(12). Here the asterisk is
related to the Hilbert transform operation, f∗(s)≡∫∞
−∞ dωf(ω)/(s+ iω), I3 is the 3× 3 identity matrix, and

A(s) =
1

2




Kn1 Kn2 0

Kn1(1− D
2 )−P + iDΩ Kn2(1− D

2 ) iD

α(s)Kn1 α(s)Kn2 0


 ,

where α(s) = (ωg)∗(s)/g∗(s). The contour Γ is the vertical
line in the region Re(s)> 0 to the right of any singularities
of the integrand. The singularities may appear as zeros of
the determinant when calculating the inverse matrix in
eq. (14):

det[I3−A(s)g∗(s)] = 0, Re(s)> 0. (15)

This characteristic equation can be solved analytically if
g(ω) is a sufficiently simple function. In the following we
consider the Lorentzian density

g(ω) = γ/π(γ2+ω2). (16)

We get g∗(s) = 1/(s+ γ), (ωg)∗(s) =−iγ/(s+ γ) for
Re(s)> 0, and thus α=−iγ. It follows that the matrix
A is independent of s and the characteristic equation
transforms to the simple quadratic equation

s2−σs+∆+ iδ = 0 (17)

with σ= (1−n2D/2)K/2− 2γ, ∆= γ2− γK/2+n2PK/4,
and δ=−n2KDΩ/4. Although this equation is derived
for Re(s)> 0 its solutions correctly define the character-
istic values of the exponential decay of R(t) for Re(s)< 0
as well. This is because an estimation of the integral in
eq. (14) for t > 0 requires the shift of the contour Γ to the
left and thus an analytical continuation of the integrand
to the region Re(s)< 0. Therefore, the incoherent state
is stable if both solutions of the quadratic characteristic
equation are in the left half plane, i.e., when the following
conditions are met σ < 0, ∆> δ2/σ2 or, equivalently,

D> D̃≡ 2
n2

(
1− 2K0

K

)
, (18a)

P > P̃ ≡ K0
n2

(
1− K0
K

)
+

4Ω2D2

n2K(D− D̃)2
. (18b)

Here K0 = 2γ is the critical coupling of the stimulation-
free (P =D= 0) system (3) with the Lorentzian distrib-
uted frequencies ωj . Note, these conditions can be
satisfied by utilizing only the proportional feedback
control, i.e., for D= 0. In this case the conditions (18)
can be simplified to

K < K̃ ≡K0/(1−n2P/K0), when P <K0/2n2,
2K0, when P �K0/2n2. (19)

Fig. 2: The values of the time-averaged order parameters
〈r1,2(t)〉 of (a), (c) observed and (b), (d) stimulated subsys-
tems of the Kuramoto model (3) are encoded in color rang-
ing from blue (incoherent state) to red (coherent state) for
(a), (b) the proportional feedback control (D= 0) and (c),
(d) proportional-differential feedback control. The number of
oscillators N1 =N2 = 1000 and the other parameters are (a),
(b) γ = 0.2 and D= 0 and (c), (d) γ = 0.005, Ω= 0.2, and
K = 100K0 = 1. The analytically predicted critical coupling
K̃ = K̃(P ) (eq. (19)) in (a), (b) and threshold P̃ = P̃ (D)
(eq. (18b)) in (c), (d) are shown by white curves.

Here K̃ denotes the critical coupling under proportional
(D= 0) feedback control with the strength P .
Figure 2(a), (b) shows that the analytical predic-

tion (19) of the critical coupling K̃ depicted by white
curves is in a good agreement with numerical simulations
of eq. (3) for a finite number of oscillators. The incoherent
state corresponds to the dark blue regions in fig. 2(a), (b).
We see that the proportional feedback control is not
very effective in the separate stimulation-registration
control setup. The proportional feedback control can be
successful only for small values of the coupling strength,
which do not exceed the double critical coupling of the
control-free system, K < 2K0.
The PD control algorithm involving both the propor-

tional and differential feedback components is more
efficient. According to eq. (18) the incoherent state can
be stabilized by the PD control for arbitrarily large values
of the coupling strength K. Figure 2(c), (d) shows the
stability region of the incoherent state in the plane of the
parameters (P,D) (dark blue regions) for K = 100K0.
Again the numerical simulations of eq. (3) for a finite
number of oscillators agree well with the analytical
threshold values P̃ = P̃ (D) defined by eq. (18) (white
curves in fig. 2(c), (d)).
According to eq. (18), the desynchronization threshold

values P̃ and D̃ of the parameters P and D increase if
the relative number of oscillators n2 in the stimulated
subsystem decreases or if the mean frequency Ω increases.
Numerical simulations of eq. (3) with different values of
the parameters N1, N2, and Ω shown in fig. 3 conform
this theoretical prediction as well.
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Fig. 3: The time-averaged total order parameter 〈r(t)〉 of the
Kuramoto model (3) is depicted vs. parameters P =D for
different number of oscillators N1 and N2 and mean frequencies
Ω, as indicated in the legend. The total number of oscillators
is N =N1+N2 = 400 and K = 1. The natural frequencies {ωj}
are Gaussian distributed with deviation σ= 0.1.

PID control of globally coupled van der Pol
oscillators. – As a last example we consider an ensemble
of globally coupled van der Pol oscillators:

ẋj = yj ,

ẏj =−ω2jxj − ε(x2j − 1)yj +KY
−H(j−N1)(PY1+ IX1+DẎ1), (20)

where the parameter ε defines the strength of nonlinearity
of each oscillator, Y1 =N

−1
1

∑N1
k=1 yk, X1 =N

−1
1

∑N1
k=1 xk

are the mean fields of the observed subsystem, and Y =
N−1

∑N
k=1 yk is the total mean field. In contrast to the

previous examples, we here use a more general (and even
more efficient) stimulation protocol, the proportional-
integro-differential (PID) control algorithm. We suppose
that the observable is the mean field Y1. The variable
X1 is the integral of Y1, the constant I denotes the
strength of integral feedback component, and the other
parameters are as above. For small parameters ε, K, P , I,
and D:

ε�Ω, K�Ω, P �Ω, I�Ω2, D� 1, (21)

eqs. (20) can be transformed to the system of the PD
controlled Landau-Stuart oscillators. Indeed, substituting
xj = zje

iΩt+c.c., yj = iΩzje
iΩt+c.c., for slowly varying

amplitudes zj , we obtain

żj =
ε

2

(
i
ω2j −Ω2
εΩ

+1− |zj |2
)
zj +

K

2
Z

−H(j−N1)
[
1

2

(
P +

I

iΩ
+ iΩD

)
Z1+DŻ1

]
.

The main difference of this equation from eqs. (1), (2)
is that here the constant (P + I/iΩ+ iΩD)/2 responsible
for the proportional feedback strength (in the representa-
tion of Landau-Stuart oscillators) is complex valued. Simi-
larly as above this system can be further reduced to the
PD controlled Kuramoto model. Substituting zj = ρje

iθj

and neglecting the dynamics of amplitudes ρj one obtains
for the phases θj a system

θ̇j =
ω2j −Ω2
2Ω

+
K

2N

N∑
k=1

sin(θk − θj)−H(j−N1)Fj ,

Fj =
P

2N1

N1∑
k=1

sin(θk − θj)+ D
N1

N1∑
k=1

(
θ̇k+

β

2

)
cos(θk − θj),

which is equivalent to eqs. (3a), (6); only the coefficients
are different. Here instead of Ω in eq. (6) we have the
coefficient β/2, where β =Ω− I/DΩ. Thus we can use
the previous results obtained for the Kuramoto model in
order to derive the desynchronization thresholds of the
PID controlled van der Pol oscillators. After a simple re-
definition of the parameters it appears that the inequal-
ities (18) defining the stability of the incoherent state
remain valid for the PID controlled van der Pol oscilla-
tors (20) with the only difference that the parameter Ω in
eq. (18b) is replaced by the parameter β:

D> D̃≡ 2
n2

(
1− 2K0

K

)
, (22a)

P > P̃ ≡ K0
n2

(
1− K0
K

)
+

4β2D2

n2K(D− D̃)2
. (22b)

The parameter K0 now denotes the critical coupling of
the stimulation-free van der Pol oscillators (20) with the
Lorentzian distributed frequencies ωj , which is K0 = 4γ.
We now recall that the desynchronization threshold
P̃ of the previously considered PD controlled Kuramoto
model (3) increases rapidly with the increase of the mean
frequency Ω. This is related to the last term in eq. (18b),
which is proportional to Ω2. For the PID controlled van
der Pol oscillators, the parameter Ω is replaced by β
and the additionally involved integral feedback allows us
to manipulate with this term. By setting the following
relationship between the integral and differential feedback
strength components

I =Ω2D, (23)

we can set the parameter β to zero. As a result we
can remove the undesirable last term in eq. (22b). The
relationship (23) is optimal in the sense that it makes
the conditions (22) defining the stability of the incoherent
state independent of the mean frequency Ω.
Although the conditions (22) are derived for small

values of the parameters ε, K, P , I, and D, the numerical
analysis of eqs. (20) shows that the PID control algorithm
works well even when the inequalities (21) are not fulfilled,
provided the relationship (23) is satisfied. In fig. 4 we
demonstrate the successful suppression of synchrony in the
ensemble of globally coupled van der Pol oscillators (20)
via the PID algorithm when the uncontrolled coupled
oscillators exhibit relaxation oscillations.
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Fig. 4: Desynchronization of the relaxation van der Pol oscilla-
tors (20) by PID feedback. Mean fields of the observed (Y1)
and stimulated (Y2) subsystem of ensemble (20) are shown
for N1 =N2 = 100, ε= 0.5, and K = 1. In eq. (20) {ωj} are
Gaussian distributed with mean Ω= 0.2 and deviation σ= 0.1.
The parameters of the PID controller are P = 2, D= 5, and
I =Ω2D= 0.2. Arrows indicate when coupling (K) and control
(PID) are switched on, respectively.

Conclusion. – We have proposed an efficient control
algorithm to suppress the synchrony in ensembles of
globally coupled oscillators for a difficult control situation,
when the simultaneous registration and stimulation of
the whole network is not possible. In this situation
previously designed control techniques [15,16,18,22] fail.
In this paper we have used a linear combination of the
proportional, differential, and integral feedback. A more
general approach can be based on the design of a suitable
adaptive filter [28,29].
Our control technique utilizing the separate stimulation-

registration setup is noninvasive and robust. It may
contribute to a novel effective electrical stimulation
therapy for brain diseases characterized by abnormal
synchrony. In Parkinsonian and essential tremor separate
stimulation and recording sites might be implanted in one
(e.g., thalamic) DBS target population. Alternatively,
for PID control of both depth and cortical activity only
the stimulation site might be implanted in a target
population in the depth, whereas an epicortical electrode
might register cortical activity of a network coupled to
the pacemaker network in the depth. Analogously, our
approach might be applied to an epileptic focus or to two
interacting foci.
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