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Delayed feedback control of the Lorenz system: An analytical treatment
at a subcritical Hopf bifurcation
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We develop an analytical approach for the delayed feedback control of the Lorenz system close to a
subcritical Hopf bifurcation. The periodic orbits arising at this bifurcation have no torsion and cannot be
stabilized by a conventional delayed feedback control technique. We utilize a modification based on an un-
stable delayed feedback controller. The analytical approach employs the center manifold theory and the near
identity transformation. We derive the characteristic equation for the Floquet exponents of the controlled orbit
in an analytical form and obtain simple expressions for the threshold of stability as well as for an optimal value
of the control gain. The analytical results are supported by numerical analysis of the original system of

nonlinear differential-difference equations.
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I. INTRODUCTION

One of the most popular methods in chaos control re-
search is the delayed feedback control (DFC) method [1].
The method allows a noninvasive stabilization of unstable
periodic orbits (UPOs) of dynamical systems. To apply this
method no exact knowledge of either the form of the peri-
odic orbit or the system equations is needed. The delayed
feedback control algorithm has been implemented success-
fully in experiments as diverse as electronic chaotic oscilla-
tors [2], mechanical pendulums [3], lasers [4], gas discharge
systems [5], a current-driven ion acoustic instability [6], a
chaotic Taylor-Couette flow [7], chemical systems [8], high-
power ferromagnetic resonance [9], helicopter rotor blades
[10], and a cardiac system [11]. In the literature, many inter-
esting suggestions have been put forward for further appli-
cation of the method (see Ref. [12] for a review). Recently a
challenging idea has been proposed [13,14] to use DFC for
controlling pathological brain rhythms.

The DFC method is based on the online measurement of a
single output signal s(7) that is a function of the current sys-
tem state x(z), s(r)=g(x(r)), and uses the time-delayed differ-
ence s(¢)—s(z—7) multiplied by a factor K as a control signal.
If the delay time 7 is equal to the period T of an unstable
periodic orbit of the system, the orbit may become stable
under the appropriate choice of feedback strength K. The
method is noninvasive in the sense that the control force
K[s(t)—s(t—7)] vanishes when the target state is reached.

Although the method is popular in experimental investi-
gations, its theory is still in infancy. Systems with time delay
are hard to handle because the dynamics takes place in
infinite-dimensional phase spaces. Even linear analysis of
such systems is difficult due to the infinite number of Floquet
exponents characterizing the stability of controlled orbits.
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The linear and nonlinear analysis of such systems is usually
performed numerically. So far, the only analytical result of a
general character has been obtained. It has been proven that
the method cannot stabilize UPOs with an odd number of
real positive Floquet exponents (the odd number limitation)
[15,16]. This is a topological limitation related to the absence
of a torsion of the controlled UPO. In addition, there are
some analytical results concerning quantitative estimation of
the stability of UPOs subjected to delayed feedback [16,17],
but they are of limited generality. Such estimations are elabo-
rated only for UPOs arising from a flip bifurcation.

In this context, a reasonable way for further development
of the delayed feedback control theory is to look for prob-
lems allowing an analytical treatment. Our idea for the ana-
lytical approach is to consider dynamical systems close to
bifurcation points of periodic orbits. Some advances in this
direction have been recently achieved for dynamical systems
close to the subcritical Hopf [18] as well as Nejmark-Sacker
(discrete Hopf) [19] bifurcations.

In a short letter [20], we have recently proposed a modi-
fied delayed feedback controller with an additional unstable
mode in order to overcome the odd number limitation. The
success of such a modification has been numerically demon-
strated for the Lorenz system but no theoretical foundation
has been presented. In this paper, we extend the ideas of the
letter [20]. We develop a systematic analytical approach for
delayed feedback control of dynamical systems close to a
subcritical Hopf bifurcation. UPOs arising from this bifurca-
tion have no torsion and cannot be stabilized by the conven-
tional DFC technique. We demonstrate our approach for the
Lorenz system as a representative of dynamical systems with
torsion free unstable periodic orbits. Note that the control of
a simple second-order dynamical system close to a subcriti-
cal Hopf bifurcation has been considered in Ref. [18]. How-
ever, the theory presented in Ref. [18] cannot be applied for
high-dimensional systems. An analytical approach developed
in this paper is applicable for any dynamical system with an
arbitrary large phase space dimension.
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The rest of the paper is organized as follows. In Sec. II,
we formulate the problem and introduce the control algo-
rithm. Section III is devoted to the analysis of the free Lo-
renz system. By using the center manifold theory and near
identity transformation we obtain an analytical solution for
an unstable limit cycle arising in the neighborhood of the
subcritical Hopf bifurcation. Then similar analysis is per-
formed for the controlled Lorenz system in Sec. IV. In the
end of this section, we analyze numerically the original sys-
tem under delayed feedback control and confirm the validity
of the analytical results. The paper is finished by conclusions
presented in Sec. V.

II. PROBLEM FORMULATION

We consider the paradigmatic chaotic system

xi=o(y-x), (1a)
y=rx—y-xz, (1b)
z=xy—bz (1c)

originally introduced by Lorenz [21] as a model of turbulent
convection. In usual considerations of this system the param-
eters o and b are fixed, respectively, to the values 10 and 8/3,
and analysis is performed for the variable parameter r. For
0<r<1, the Lorenz system has a unique stable steady state
(a stable node) at the origin C°:(0,0,0). For r> 1, the origin
becomes a saddle and two additional symmetrical stable
fixed points C*,

(Eyhz) =& \b(r=1), =\b(r-1).r=1),  (2)

appear. For r>ry, the steady states C* become unstable. The
value

o(oc+b+3)
ry=——"——=~24.736842 11 (3)
o-b-1
represents the point at which the subcritical Hopf bifurcation
occurs. Just below this bifurcation point, for
r=ry—Ar, 0<Ar<ry, (4)
there are two small unstable limit cycles surrounding the
stable steady states C*. Moreover, at the same values of the
parameter r there exists a strange attractor. Thus the system
is multistable and depending on initial conditions the phase
trajectory may either be attracted to the one of the steady
states or exhibit a chaotic behavior on the strange attractor.
Our aim is to stabilize the unstable limit cycles arising at
the Hopf bifurcation using the delayed feedback control
technique. In particular, we are interested in analytical treat-
ment of this problem. Note that the periodic orbits arising at
this bifurcation are torsion-free and we need an unstable con-
troller. Specifically, we consider the following control algo-
rithm:
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x=o(y-x), (5a)
y=rx—y-xz+W(y-yp), (5b)
i=xy-bz, (5¢)
W=AW+K[y-y(t-1]. (5d)

Here as well as in Ref. [20] we suppose that y is an observ-
able and apply the control perturbation W(y—y,) only to the
second equation of the Lorenz system. However, in contrast
to Ref. [20] we use a nonlinear perturbation. As pointed out
in Ref. [18] this is a necessary requirement when considering
the system close to a Hopf bifurcation in order to provide the
coupling between the controlled system and controller in av-
eraged equations. The parameter y, in the perturbation is the
value of the observable when the system is in one of the
stable steady states C*. For definiteness, we consider the
control of the periodic orbit surrounding the fixed point C*
and take y,= y;zvb(r—l). Note that the value y, can be
measured experimentally, since C* is the stable fixed point.

Equation (5d) describes an unstable delayed feedback
controller, which supplements the system with an additional
unstable Floquet mode and eliminates the odd number limi-
tation. The positive parameter A.> 0 defines the value of the
additional Floquet exponent. The parameter K denotes the
strength of the feedback gain. The delay time 7 in Eq. (5d) is
equal to the period T of the unstable periodic orbit such that
the controller does not change the periodic solutions of the
Lorenz system with the period 7= 7. Thus if the stabilization
of the periodic orbit is successful there is no power dissi-
pated in the feedback loop.

In a real experiment, the period T of an UPO is not known
a priori and different strategies can be used for selection of
the right value of the delay time 7. A universal approach is
based on minimization of the amplitude of the feedback per-
turbation K[y—y(t—7)] [1]. An adaptive technique with au-
tomatic adjustment of the delay time has been considered in
Ref. [22]. Another approach is based on minimization of the
difference 7—7,(7), where T(7) is the period of the output
signal y(¢), which generally differs from T if 7% T [23].

III. ANALYSIS OF THE FREE LORENZ SYSTEM

We start our analysis with the free Lorenz system (1).
First we transform the variables using the eigenvectors of the
steady state C* at the bifurcation point r=ry as a basis for a
new coordinate system. Then applying the center manifold
theory we eliminate the fast nonoscillating mode and obtain
a reduced system for oscillating modes. Using the near iden-
tity transformation we transform the equations for the oscil-
lating modes to the normal form of the subcritical Hopf bi-
furcation. As a final result of this section, we obtain an
analytical solution for the unstable periodic orbit arising
from this bifurcation.

A. Transforming the system variables

Our aim is the control of the unstable limit cycle sur-
rounding the stable fixed point C*. Thus it is convenient to
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shift the origin to this point by using the transformation
X=XpHuy, Y=Yptiuy, I=zp+u. (6)

Defining the state vector

-0 o 0
AO = 1 - 1 - J”b(rH— 1)
\“"b(rH— 1) \/b(rH— 1) -b
0 0 0 0
A={0 0  —1| Nw=|-wm| (0

1 1 0 Uy
and the parameter

e=\b(ry—1)=\b(r—1) = \bl(ry- DAr2 (11

defines the closeness of the system to the bifurcation point
r=ry. This is the main control parameter, whose smallness
we exploit in the following perturbation theory.

The first two terms Agu and €A u in the right-hand side of
Eq. (8) represent the linear part of the vector field, while the
last term N(u) defines the nonlinear part. The matrix A,
—gA, is the Jacobian derivative at the fixed point C*, where
Ay is the value of the Jacobian calculated at the bifurcation
point r=ry and €A, is a small deviation due to the shift of
the parameter r from the bifurcation point.

We now transform the system variables in such a way as
to diagonalize the unperturbed linear part Aqu of the vector
field. With this aim, we solve the eigenvalue problem for the
matrix Ay,

A0¢(M) — 3,#(;[,(#). (12)
As a result we obtain three eigenvalues
Y= y; =jw=9.624 530 060i, 7y;=—13.666 666 63
(13)
and three corresponding eigenvectors
0.286 306 771 5 - 0.239 527 044 9i
¢!V ~| 0.516 840295 9 +0.036 029 768 49i |,
0.014 609 827 41 — 0.659 865 377 3i

¢(2) — ¢(1)*’

0.874 089 854 1
¢® =|-0.3204996136 |. (14)
—0.400397 703 1
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u= (“1 U us )T, (7)
we rewrite the Lorenz equations in the matrix form
u=Aou—-eAu+Nu), (8)

where the matrices Ay, A, and N(u) are

-10 10 0
P
1 -1 - —\51414
7 , )
!— 8
—7V'51414 —V51414 -—

The first two eigenvalues are imaginary and their eigen-
vectors are complex conjugates. The third eigenvalue is real
and negative. We use the eigenvectors (14) as a basis for a
new coordinate system and apply a linear transformation of
the system variables:

3
u(t) = 2 (™. (15)
=1

The new dynamic variables &,(r) (u=1,2,3) define the am-
plitudes of the system eigenmodes at the bifurcation point
r=ry. Note that &,(¢) and &,(¢) have to be complex conjugate,
gj(:):gl(r), in order to provide the real valued solution for
u(t). To derive equations for the new variables &,(r) we in-
sert Eq. (15) in system (8):

3 3 3
D E W = DN E, W - A PWE,
p=1 =1 =1

3
+ N( D gﬂqs(m) . (16)
pu=1

To obtain equations for §,L(t) in the explicit form one needs
the adjoint eigenvalue equation

WA=y, (17)

The solutions of this equation satisfying the normalization
conditions

<¢,(u)|¢(u)>=5w m,v=1,2.3, (18)
are

0.274 371 821 3 +0.245 644 438 8i \”
0.816 981259 6 —0.154 736 036 5i ,
—0.054 986 710 09 + 0.660 114 055 5i

2 = g,

ll,(l) ~
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0.8296790108 \”
Y =|-04503971773 | . (19)
-0.325760791 5

Multiplying Eq. (16) by *) from the left side and using
conditions (18) one obtains finally the equations for the
eigenmodes,

3
E,= 76— 2 (WA PU)E, + g,(€1,6,E3)
pu=1

Efv(gl?gbgf‘i)v v= 1’273s (20)

where g,(¢,&,&) are the nonlinear functions

gv(§1’§2’§3) = l”v)

3
N(E §M¢<M>> , v=1,2,3.
u=1
(21)

Until now Egs. (20) are exact. They are equivalent to the
original Lorenz system (1). However, this form is more con-
venient when analyzing the system dynamics close to the
Hopf bifurcation, for small values of the parameter e.

B. Reducing the system dimension

Close to the bifurcation point £=0, Egs. (20) admit an
analytical treatment. First we note that for £=0, the linear
part of the vector field is diagonal and small deviations from
the origin are described by three linear independent modes

é,,: v,&,, v=1,2,3. The first two modes are oscillating,
v1,==*iw, and the third mode is decaying, y;<<0. This en-
ables us to apply the center manifold theory and exclude the
decaying mode.

To get a reduced system of equations for the oscillating
modes in relation to the parameter €, we change for a time
the role of the parameter . We regard £ as an additional
dependent variable that satisfies the trivial equation

§=0. (22)

Then for the extended system (20), (22), linearized at the
fixed point (&;,&,&,€)=(0,0,0,0), the & axis is a stable
subspace and (&, &,,¢) is the center subspace. Thus accord-
ing to the well known theorem, in the (&,,&,,&,&) phase
space there exists a center manifold

&=h§,6.¢) (23)
tangent to the center subspace
dh oh oh
h(0,0,0)=0, — = — = — =0.
i l0o0 961000 € 1000)
(24)

We expand the manifold function in Taylor series up to the
second-order terms
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h(é),&.8) = Kyl + Konobs + Koope” + Konoe + K1 €18
+ K106, (25)

The linear terms are omitted to satisfy the conditions (24).
Differentiating (23) we obtain

. _ﬂ. ﬂ (26)
53—0.’5151"'075252,

in what follows

oh
f3(§ls§2’h(§l’§278)) = Efl(flsgbh(glsg%s))
1

h
D h(En ). (27)
&

By equating coefficients at different orders & &'’ (n+m+1
=2) we get a linear system of equations yielding the coeffi-
cients of the expansion (25). Solving this system we obtain

K> = —0.004 667 161 467 + 0.002 937 029 4951,
Koy = Kzoo’ Ko =0,
K11 = 0.020 429 285 22 — 0.002 508 863 4041,

Kin=Kgp,  Kijo=0.004050541094.  (28)

Substituting Eq. (23) in the two first equations of the system
(20) we obtain two equations for the oscillating modes,

gv =fV(§l’§2’h(§l s §2’8))7

Due to the property §2=§1k these equations are equivalent.
Using the notations

v=1,2. (29)

&=6 §=§=§ (30)
they can be presented in the form

E=f1(EE (EE 8)). (31)

The function f,(&, £ ,h(€,&",&)) in Eq. (31) is rather compli-
cated. It contains terms up to fourth order. However, most of
them drop out when transforming this equation to the normal
form. We write out explicitly only the relevant terms:

E=iwé+ eapf+ay |8+ an +ané? +ay €7+ -
(32)

Here ay, ay;, axy, agy, and ay; are the complex constants

ajp=-0.1803379954 -1.082 716 628i,
a,; = 0.000 471 257092 6 +0.003 413 821 462i,
ayy = 0.221 785599 3 + 0.243 013 769 5i,

agp =~ 0.012414 258 38 — 0.083 878 778 901,
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a;; =~-0.2804158435+0.2341751696i.  (33)

Equation (32) represents the reduced system, which de-
scribes well the Lorenz dynamics close to the subcritical
Hopf bifurcation. To obtain the solution for the unstable limit
cycle arising from this bifurcation, in the next section we
transform this equation to the normal form.

C. Near identity transformation and parameters
of the unstable limit cycle

The reduced system (32) can be transformed to the nor-
mal form of the subcritical Hopf bifurcation

n=Nm+c7y +0(7P) (34)

either by using a perturbation theory based on the multiscal-

ing expansion or by applying a near identity transformation.

Both approaches lead to the same result, but the second ap-

proach is simpler to handle and we use it in this paper.
Following Ref. [24], the near identity transformation that

transforms Eq. (32) to the form (34) is

E 7"

STk

E=n+ +0(|9"). (35)

2<j+k<3
Substituting Eq. (35) in (32) and using Eq. (34) one obtains
a polynomial equation with respect to 7 and 7". Equating
coefficients of the polynomial equation yields the parameters
Asand ¢; of the normal form (34),

Nr=io+say, (36)

1 2 % %
= ; axayy — gaozaoz—anan +ay + 0(g)

~ 0.002 155 311 349 - 0.023 326 623 61i, (37)

and the coefficients «;, of the near identity transformation
(35). The coefficients of leading terms in the transformation
are

2ay ap amn
Ko="00 Kn=w ke=ow e (38)
f f A

Equation (36) defines the eigenvalue of the fixed point C*.
For £>0, it is stable since Re(\;)=& Re(a;p) <0. The un-
stable limit cycle surrounding this fixed point can be found
by solving the normal form equation (34). By substitution
=R exp(i®), where R and O are real-valued variables, this
equation can be presented in the form

© =Im(\) + Im(c))R?, (39a)

R=[Re(\)) +Re(c))R*IR. (39b)

From Egs. (39b) and (36) it follows that the radius of the
limit cycle is

[ R
Ro= /- Rela0) = 9,147 200 186\e.  (40)
Re(cy)

The frequency of the limit cycle is determined by the right-
hand side of Eq. (39a) at R=R,:
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Im(c;)
wy=w+ (Im(alo) - m Re(a10)>8
=~ 0.624 530 060 — 3.034 488 720¢. (41)

Thus the analytical solution of the normal form equation (34)
corresponding to the unstable limit cycle is

70(t) = Roexpliwgt). (42)

The dynamics of the mode & corresponding to this solution is
obtained by inserting Eq. (42) in the transformation formula
(35).

Finally, one can easily obtain the Floquet exponent A of
the unstable limit cycle. Linearization of Eq. (39b) at the
fixed point R=R,, leads to the expression

Ag=Re(\p) +3Re(c))Rj =2 Re(a;p)e = 0.360 675 990 7.
(43)

We see that the the Floquet exponent is proportional to the
parameter ¢ and is positive for £ >0.

IV. ANALYSIS OF THE CONTROLLED LORENZ SYSTEM

In this section, we analyze the Lorenz system under de-
layed feedback control described by Egs. (5). We exploit the
relationship between the characteristic equations for the Flo-
quet exponents of two different control problems, the de-
layed feedback control and the proportional feedback con-
trol. The latter problem is much simpler and admits an
analytical treatment similar to that described in Sec. III. As a
result we obtain the characteristic equations for the Floquet
exponents of the Lorenz system under delayed feedback con-
trol in analytical form. We finish the section with numerical
analysis of the original system of nonlinear differential-
difference Egs. (5).

A. Proportional versus delayed feedback
First, we rescale the controller variable and parameters
K=¢k (44)

W=ew, A.=gel,

to rewrite the controlled Lorenz system (5) in a more conve-
nient form

x=o(y-x), (45a)
y=rx—y—xz+ew(y—y), (45b)
i=xy-bz, (45¢)
w=eNw+k[y—y(t-7)]. (45d)

Generally this is a rather complicated system of nonlinear
differential-difference equations. The dynamics of the system
takes place in an infinite-dimensional phase space and reduc-
tion of the phase space dimension via the center manifold
theory is a nontrivial task. To overcome the problem of an
infinite-dimensional phase space we proceed in the following
way.
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Analogously to Ref. [17], we consider the proportional
feedback control instead of the delayed feedback control,
i.e., in Eq. (45d) we replace the delay term y(r—7) with the
periodic solution of the free Lorenz system y,(f) correspond-
ing to the unstable limit cycle, which we intend to stabilize.
Then in place of the system (45) we get

i=oly-1x), (46a)
y=rx—y-xz+ew(y—y), (46b)
i=xy-bz, (46¢)
w=ekw+k[y—yy0)]. (46d)

Both Egs. (45) and (46) have the same periodic solution
corresponding to the desired limit cycle. Although the limit
cycle has different Floquet exponents for the systems (45)
and (46), there exists a relationship between these two Flo-
quet problems.

In the case of the delayed feedback control, the Floquet
exponents are determined by linearization of the system (45):

o = o(Sy — ox), (47a)

Oy = (r—2zp) 8 — 8y —xo 6z + &y

-y ow, (47b)
82 =— bz + xy0y + yox, (47¢)
oW =eN.ow + k[ Sy — Sy(t—7)]. (47d)

Here [ &x, 8y, 8z] denote small deviations from the periodic
orbit [xy(2),y0(2),zo(t)1=[x0(t+ 1),y (t+7) ,7o(t+ 7)] that sat-
isfies the free system (1), and Sw=w. Due to the Floquet
theory the delay term Sy(t—7) in Eq. (47d) can be eliminated
and the system of differential-difference equations (47) can
be transformed to a system of ordinary differential equations.
The Floquet decomposition of solutions of the system (47)
implies that y(f)=exp(Ar)U(t), where A is the Floquet ex-
ponent and U(f)=U(t—7) is a periodic function. It
follows that the delay term can be expressed as Sy(t—7)
=exp(—A7)8y(r). The price one has to pay for the elimination
of the delay term is that the variational equations (47) defin-
ing the Floquet exponent depend on the Floquet exponent
itself.

In the case of the proportional feedback control the Flo-
quet exponents are defined by linearization of the system
(46). This leads to variational equations similar to Egs. (47)
with the only difference that the last term in Eq. (47d),
k[ 8y —6y(t— 1) |=k[ 1 —exp(=A7)]dy, is replaced by kdy. It
follows that the Floquet exponents for the delayed feedback
control can be obtained from linearized system (46) by using
the substitution

k— k[1-exp(-A7]. (48)

Thus rather than analyzing the system of differential-
difference Egs. (45) we can focus on the analysis of the
simpler system (46) described by ordinary differential equa-
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tions. If we manage to derive analytically a characteristic
equation for the Floquet exponents of the system (46), then
we can use the substitution (48) and obtain the characteristic
equation for the case of the delayed feedback control system
(45).

The system (46) is nonautonomous due to the time-
dependent term y,(7) in Eq. (46d). It is convenient to trans-
form this system to the autonomous form by supplementing
it with an additional free Lorenz system

Xo=0(yg—Xo), (49a)
Yo =X = Yo — X205 (49b)
Z.() =XoYo — bZ(). (49C)

We suppose that the initial conditions of the system (49) are
chosen on the stable manifold of the desired limit cycle, such
that its solution converges to the limit cycle. As a result these
equations generate the periodic signal yo(r)=yq(t+7) which
is used as an input in Eq. (46d).

Our aim now is to reduce the dimension of the system
(46), (49). But first we transform the variables in a similar
way as it has been done in Sec. III A. We shift the origin in
Egs. (46) and (49) to the fixed point C* and obtain

uonu—8A1u+(0 1 O)TSWM2+N(u), (503)

w=ekw+k(uy —ug), (50b)

lio =A0u0— 8A1U0+N(ll0). (500)

Here the vector u is defined analogously to the vector u in
Eqgs. (6) and (7),

Upz )T

Yo=Yf

Up= (’401 Uy

= (v -7 w-z)". (1)

Using the linear transformation (15) for the vector u and the
similar transformation

3
uo(t) = 2 &) p™ (52)
=1

for the vector u, we finally transform the Lorenz system
under proportional feedback control to the form

3 3
év= yvgv_ 82 <¢’(V)|Al|¢(’u)>§,u, + SWE lﬂ(ZV)(ﬁ(ZM)gp,
u=1 p=l

+gu(§l’§2’§3) = FV(§I’§2’§3’W)’ v= 192’39 (533)
3

W= e+ k2 Y(E,— &), (53b)
u=1
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3
501;: Yvbov— 82 <¢V)|A1|¢(’L)>§o# +g,(&01- €020 603) s
=1
(53¢)

v=1,2,3,

convenient for application of the center manifold theory. The
nonlinear functions g, are defined by Eq. (21).

For small value of the parameters €, \,, and k, the system
(53) can be treated analytically in much the same way as the
free Lorenz system.

B. Reducing the dimension of the Lorenz system controlled by
proportional feedback

First we reduce the dimension of the system (53) using
the technique described in Sec. III B. For £=0, \.=0, and
k=0, the linear part of the vector field is diagonal and small
deviations from the origin are described by &,=7,&,, w=0,
and &y,=1v,&, with v=1,2,3. The modes &, &, &, &, are
oscillating with the eigenvalues v, ,==*iw, the mode w has
zero eigenvalue, and the modes &;, &y are decaying, since
y3<0. Thus one can apply the center manifold theory and
exclude the decaying modes.

In order to get a reduced system of equations in relation to
the parameters &, A., and k, we regard them as additional
dependent variables satisfying the trivial equations

k=0. (54)

The extended phase space of the system (53), (54) is defined

by dynamical variables (&, &, &. &, &1, €os 03 W5 &, No).
For this system, linearized at the origin, the plane (&;, &y;3) is

a stable subspace and (&,,&,, &), &n.€,w,k,\,) is the center
subspace. Thus in the extended phase space there exists a
center manifold

( ; ) - (hc.(g"§2’8’§01’502,W,k,)\c)
€03 ho(éo1.é00-€)

tangent to the center subspace at the origin:

H(0)=0, DH(0)=0. (56)

§=0, \.=0,

) =H (55)

Here DH denotes the Jacobian of derivatives with respect to
all variables (&,&,&,&0n.€,w,k,\,) of the center sub-
space. First we note that the function &, depends not on all
variables of the center subspace but only on the subset
(&1, &0, €). This is due to the fact that Eq. (53¢) is indepen-
dent of Egs. (53a) and (53b). Equation (53¢) corresponds to
the free Lorenz system and coincides with Eq. (20). It fol-
lows that the manifold function A, coincides with that of Eq.
(25), i.e., hy=h(&y;, &y»€), and hence

&3 = h(&o1. €008 (57)

Substituting Eq. (55) in (53) one obtains the equation for
the manifold function H, similar to Eq. (27). Direct analysis
of this equation shows that the expansion of the function 4,
up to the second-order terms also leads to the expression
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(25), ie.,
hence

h(é1.6.€.801.60.w. K.\ )=h(§,&,¢), and

§3Zh(§17§278)' (58)

It turns out that the controller does not change the manifold
function of the controlled system. Substituting Eq. (58) in the
first two Egs. (53a) one obtains the equation for the oscillat-
ing mode of the controlled system,

E=F (€ M(EE )W), (59)

where é=¢§ :5; Writing out explicitly only the relevant
terms of the function F; one obtains finally the reduced equa-
tion for the controlled system in the form

é= iwé+eapé+ebywé+ 6121|§|2§+ azof2
+apnE +ay|df+ -, (60)

similar to Eq. (32). The only difference is that here we have
an additional term eb;;w¢ related to the control perturbation.
The coefficients a g, sy, Az, ag, @y, are defined by Eq. (33)
and the value of the coefficient by is

by = 0.427 8239395 -0.050 538 173 25i. (61)

Equation (60) has to be supplemented by Eq. (53b) for the
variable w to complete the system of reduced equations de-
scribing the dynamics of the Lorenz system under propor-
tional feedback control. Writing explicitly the sum in Eq.
(53b) and substituting Egs. (57) and (58) for the decaying
modes, one obtains

W= ehow + ke (€= &) + kP (€ — &) + kS [h(E,E )
- h(éy,&.)]. (62)

Here §0=§01=§;2 is the solution of the free Lorenz system
for the oscillating mode corresponding to the unstable limit
cycle.

C. Near identity transformation and averaging

We use the near identity transformation (35) to simplify
the reduced system (60), (62). First we transform Eq. (60).
By substituting Eq. (35) in Eq. (60) and using the technique
described in Sec. III C we derive the normal form equation
similar to Eq. (34) but with an additional control perturbation
ebw

=N+ o7’y +ebyw. (63)

Here we have restricted ourself to the leading term in the
control perturbation, i.e., in the expression &b wé
=eb; W[ 7+0(|5*)] we have omitted the O(|7|?) terms.

We now simplify Eq. (62). Again we use the near identity
transformation (35) and transform the variables (¢,&))
— (7, 79). Afterward we average Eq. (62) over the period
7=21/ w, of the limit cycle. We suppose that w is a slowly
varying variable. The variable 7, satisfies Eq. (42), i.e.,
70(t) =Roexp(iwpt). For the variable 7, we suppose that it can
be presented in the form 7(f)=A(etr)exp(iwyt), where A(et) is
a slowly varying complex amplitude. Then the averaging
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eliminates all the terms containing the fast exponents

exp(ximwyt), with nonzero integer m, and we obtain
w=ehow +kP(| 7 = [ ml?), (64)

where the coefficient P is

i *
P="landy’ - andy) + Kiodt” + 0(e)

~ —0.024 349 264 335. (65)

In the next section, we exploit the simplified system of
Egs. (63), (64) to obtain the characteristic equation for the
Floquet exponents of the controlled system.

D. Stability analysis of the controlled system

By the substitution =R exp(i®), Egs. (63) and (64) can
be presented in the form

0= Im(\y) + Im(c,)R* + & Im(by)w, (66a)
R= [Re(\y) + Re(c;)R*+ & Re(b;)w]R, (66b)
W =e\w+kP(R*> = R}). (66¢)

These equations have the solution (@,R,w)=(wyt,R,0),
which corresponds to the limit cycle of the free system. Lin-
earization about this solution leads to the variational equa-
tions

=21Im(c))RySR + & Im(by,) w, (67a)
SR =AySR + € Re(by;)Rydw, (67b)
8\ = 2kPRyOR + e\ .Ow. (67¢)

Here A, is the Floquet exponent of the free orbit defined by
Eq. (43) Equations (67b) and (67c) are independent of Eq.
(67a) and define the nonzero Floquet exponents of the con-
trolled limit cycle, while Eq. (67a) defines the zero Floquet
exponent. The nonzero Floquet exponents A satisfy the qua-
dratic equation

A2 = (Ag+eN)A + Mg\, +&°Qk =0, (68)
where
0 =2PRe(b;)Re(a g)/Re(c;) = 1.743 243 862. (69)

We are reminded that Eq. (68) is the characteristic equa-
tion for the Floquet exponents of the limit cycle under pro-
portional feedback control. To derive the characteristic equa-
tion for the case of the delayed feedback control we apply
the substitution (48). As a result we obtain the quasipolyno-
mial characteristic equation

A% = (Ag+eN)A + eAg\, + 20k 1 —exp(—- A7)]=0.
(70)
By rescaling the Floquet exponents
A=ge\, Ag=e\, (71)

this equation can be presented in a more convenient form
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A2 = (Ao + AN + NN + QK[ 1 —exp(— eAn]=0. (72)
From Eqgs. (43) and (71) it follows that
Ao = 0.360 675990 7. (73)

Equation (72) is the main result of this paper. It defines
the Floquet exponents of the controlled Lorenz system close
to the subcritical Hopf bifurcation in relation to the bifurca-
tion parameter & and the parameters A, and k of the unstable
delayed feedback controller.

The quasipolynomial Eq. (72) has an infinite number of
solutions, since it defines the Floquet exponents of a system
described by differential-difference equations. In the general
case, the solutions of Eq. (72) can be determined numeri-
cally. However, the leading Floquet exponents close to the
bifurcation point can be obtained analytically. For g|\|7
<1, we can use an approximation exp(—eA7)=1-gl\T7,
which transforms Eq. (72) to the simple quadratic equation

A2 = (Ao + N, —kQeT\ + A\, =0. (74)
The solutions of this equation are

No+ )\C—kQ8T+ \/()\0+ N, —kQe7)?
2 - 4 -

)\1’2= )\OAC'

(75)

In Fig. 1(a), we compare the leading Floquet exponents of
the controlled system determined by three different methods,
namely, (i) by solving the quasipolynomial Eq. (72), (ii) us-
ing the solutions (75) of the quadratic equation (74), and (iii)
by solving the exact system of variational Egs. (47). Equa-
tion (72) has been solved by the Newton-Raphson algorithm.
The numerical analysis of the variational Egs. (47) has been
performed by the algorithm described in Ref. [25]. All three
above results are in good quantitative agreement, as viewed
in Fig. 1(a). Thus the leading Floquet exponents are reliably
predicted by the simple analytical expression (75).

The mechanism of stabilization is evident from Fig. 1(b).
For k=0, two real positive solutions of Eq. (74), A=\, and
A=A\, describe an unstable eigenvalue of the free system and
the free controller, respectively. With increasing k, the eigen-
values approach each other on the real axis, then collide and
pass to the complex plane. For k=k,, where

ko = ()\0 + )\C)/QS T, (76)

they cross the imaginary axis and move symmetrically into
the left half plane, i.e., both the system and the controller
become stable. An optimal value of the control gain is

-
kop = ko +2VAoA J Qe T, (77)

since it provides the fastest convergence to the stabilized
limit cycle with the characteristic rate \,,;,=—VAg\..

E. Numerical demonstrations

To verify the validity of the linear theory we have
numerically investigated the original system of non-
linear differential-difference Egs. (45). For the set of param-
eters £=0.1 (r=24.14389065), A.=02, k=9.25 7
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FIG. 1. (a) Real parts of leading Floquet exponents of the con-
trolled limit cycle as functions of the control gain for £=0.1, A,
=0.2. Dashed and solid lines show the solutions of the characteristic
Egs. (74) and (72), respectively. Dots correspond to the values of
Floquet exponents obtained from the exact variational Egs. (47). (b)
Root loci of Eq. (72) as k varies from 0 to o for the same parameter
values as in (a). Crosses and black dot denote the location of the
roots for k=0 and o, respectively.

~(.673 983 28, the results are presented in Fig. 2. In nu-
merical simulations, the controller is switched on only when
the system is close to the desired periodic orbit and switched
off when it is far away from the orbit. Specifically, we pro-
ceed in the following way. For large values of the quantity
[y=y;]>Y,x=1.2, we turn off the controller, i.e., we take
k=0 and eliminate the term ew(y—y,) in Eq. (45b). The con-
troller variable is dropped to zero, w=0, at every moment of
the turning off.

Without control (#<< 7), the Lorenz system demonstrates a
chaotic behavior on the strange attractor. For > 7, the con-
trol algorithm starts to act and after a transient process the
controlled system approaches a previously unstable limit
cycle, and the feedback perturbation vanishes.

V. CONCLUSIONS

We have developed an analytical theory of the unstable
delayed feedback controller recently proposed in the letter
[20] for stabilization of unstable periodic orbits without tor-
sion. The theory is applicable for any dynamical system
close to a subcritical Hopf bifurcation. The periodic orbits
arising at this bifurcation satisfy the odd number limitation

PHYSICAL REVIEW E 73, 036215 (2006)
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FIG. 2. Dynamics of (a) variable y, (b) controller variable w,
and (c) delayed feedback perturbation k[y—y(z—7)]. The initial con-
ditions are x(-157)=8.109 559459, y(-157)=13.037 199 46,
72(=157)=14.274 650 65, w(=157)=0. y(1)=0 for —157<t<-147.
The control is initiated at =7. The values of the parameters are &
=0.1, \.=0.2, 7=0.673983 28, k=0 for —157<r<7 and k=9.25
for t=1. For [y—y(t—1)| > Y,,4,=1.2, the controller is off (see Sec.
IVE for details). The black regions are densely filled by
oscillations.

and could not be stabilized by the conventional delay tech-
nique. Our analytical approach is demonstrated with the Lo-
renz system.

To compare our approach to that presented in Ref. [18] we
note that the simple second-order dynamical system under
delayed feedback control considered in Ref. [18] has been
treated analytically by the averaging method. Here, in the
case of a more complex third-order dynamical system, we
had to utilize additional tools of nonlinear dynamics, namely,
the center manifold theory and the near identity transforma-
tion. It should be recognized that instead of the near identity
transformation the multiscaling approach can be used. Both
approaches lead to the same results, but the first approach is
simpler. By using these tools we managed to derive analyti-
cally the characteristic equation for the Floquet exponents of
the Lorenz system under delayed feedback control. Solving
this equation we have determined simple analytical expres-
sions for the leading Floquet exponents as well as for the
threshold of stability and the optimal value of the control
gain. Although the analytical approach has been demon-
strated for a specific third-order system its extension to sys-
tems with the phase space dimension higher than 3 is
straightforward.

We emphasize that the theory of the delayed feedback

036215-9



V. PYRAGAS AND K. PYRAGAS

control is very complicated. Therefore any analytical results
even though they are elaborated for a particular class of dy-
namic systems represent a valuable contribution to the theory
of delayed feedback control. The analytical results obtained

PHYSICAL REVIEW E 73, 036215 (2006)

in this paper give a better insight into the mechanism of the
delayed feedback control of unstable periodic orbits without
torsion and are important for optimizing the control
technique.
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