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Abstract

We present theoretical and experimental results of stabilizing an unstable steady state in a Mackey-Glass system and
its electronic analog driven into regions of hyperchaotic oscillations. Three stabilization methods based on conventional

feedback, tracking filter. and delayed feedback are considered.

PACS: 05.45.4+b

1. Introduction

Chaos in dynamical systems can seriously limit their
performance in applications where a stable behaviour
is important. In recent years there has been much inter-
est in techniques which attempt to select one specific
orbit of a chaotic system from an infinite variety of
unstable behaviours and stabilize it with tiny feedback
perturbations {1-14]. The techniques developed are
based on either a discrete [ 1-6] (see also Ref. [15]
for a survey) or a continuous [7-14] approach. The
discrete techniques imply a preliminary analysis of the
Poincaré map of the system and a subsequent adjust-
ment of an accessible control parameter each time the
system passes through a chosen Poincaré section. The
time-continuous techniques are based on constructing
permanent perturbations that leave unchanged the de-
sired orbit of the system and change only its Lyapunov
exponents in such a way that the orbit becomes stable.
An important feature of all these techniques is that
they are applicable to experimental situations in which

a priori analytic knowledge of the system dynamics
is not available [2-4,8~14]. The time-continuous ap-
proach does not require any preliminary or on-line
computer analysis of the system dynamics and can be
easily implemented in various experiments by a purely
analog technique {8-12,14].

Most investigations in the field of controlling chaos
deal with stabilization of unstable periodic orbits [ 1-
12]. Since such orbits are dense in a typical strange at-
tractor one can render a chaotic system periodic with a
great variety of periodic behaviours by stabilizing dis-
tinct periodic orbits. One can also stabilize aperiodic
orbits of the strange attractor by synchronizing the cur-
rent behaviour of the system with its pre-recorded his-
tory [ 13,14]. Thus under the action of small perturba-
tions an unpredictable chaos can be transformed into
a predictable one. Along with unstable periodic and
aperiodic orbits any autonomous chaotic system con-
tains at least one unstable stationary point. These sta-
tionary points represent unstable steady states (USSs)
of the system and can also be stabilized by feedback
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techniques [ 16-23]. The stationary point can belong
to a set of the strange attractor or be far away from
this set. In both cases the system can be held on the
stationary point with only small perturbations compa-
rable with the noise level in the system, however in
the second case the switching from chaos to a steady
state requires large transicent perturbations.

The problem of stabilizing the USSs of chaotic sys-
tems is, maybe, the most important object for various
technical applications, although in the field of control-
ling chaos it has received little attention. Up to now the
research has mainly focused on low-dimensional sys-
tems [ 16-23]. In this Letter we consider the problem
of stabilizing the USSs in an infinite-dimensional sys-
tem described by a delay differential equation driven
into regions with a characteristic dimension of the
strange attractor of order 10. Systems based on de-
lay differential equations represent a special, relatively
simple, case of spatially extended systems described
by partial differential equations. Thus the problem
considered here sheds light on the more general prob-
lem of controlling spatiotemporal chaos [24-26]. To
be specific, we consider this problem for the Mackey-
Glass (MG) system [27], described by the first order
delay differential equation,

dx ax(t—7)

g{*—m“C}‘(’)- (1)

It has been introduced as a model for regeneration of
blood cells in patients with leukemia. x(¢) represents
the density of circulating cells at time ¢, when it is
produced, and x(t — 7) is the density when the “re-
quest” for more blood cells is made. Delay equations
such as Eq. (1) describe systems in which a stimu-
lus has a delayed response. There are many practical
examples from physics, economics, biology and other
fields. Eq. (1) has become popular in chaos theory,
especially as a model for producing high dimensional
chaos to test various methods of chaotic time series
analysis (see for example Refs. [28,29]). In such
studies one keeps usually the parameters a, b, and ¢
fixed at a = 0.2, b = 10, and ¢ = 0.1, and varies the de-
lay time 7. The number of parameters in Eq. (1) can
be reduced by dividing this equation by ¢ and chang-
ing the time scale ¢ = t. The parameters 7 and a are
transformed as follows: 7¢ = 7 and a/c = a. As a
result, the given set of the parameters becomes a = 2,
b =10, ¢ = I, and 7 is ten times smaller than that

under usual considerations. The changes in the qual-
itative behaviour of the attractor as the parameter 7
is varied are as follows [28]. The instability occurs
at 7 =7 = 0.471. For 0.471 < 7 < 1.33, there is a
stable limit cycle attractor. A period doubling bifur-
cation sequence is observed at 1.33 < 7 < 1.68. For
7 > 1.68, numerical simulations show chaotic attrac-
tors at most parameter values. The dimension of the
strange attractor increases linearly with 7 and is of the
order of 10 at 7= 10 [28,29].

The rest of the paper is organized as follows. The lo-
cal analysis of the steady state of the unperturbed MG
system is presented in Section 2. Three methods of
stabilizing the USS based on conventional feedback,
tracking filter, and delayed feedback are described in
Sections 3, 4, and 5, respectively. The experimental
procedure and results are presented in Sections 6 and
7, respectively, for a specially designed electronic ana-
log of the MG system. The paper is completed by
conclusions given in Section 8.

2. Local analysis of the unperturbed steady state

At given values of the parameters a, b, ¢, and any
value of the parameter 7, Eq. (1) has three stationary
points xo = 0, xg = — 1, and x¢ = 1. Depending on the
initial conditions the attractor is located either at x <
0 or at x > 0. Since these two cases are symmetrical
we consider only the case x > 0 and focus on the
local properties of the system close to the stationary
point xo = 1 that gives birth to the strange attractor.
These properties can be determined by the variational
equation

déx

= —-46x(t — 1) — Ox, 2
P 46x(t — 1) — Ox (2)

which defines the dynamics of small deviations 6x =
X — xo from the stationary point xo = 1. This equation
can be solved by the substitution 6x o exp(Atf),

A+dexp(—Ar) +1=0, (3)

where A = u + iv defines the eigenvalues of the sta-
tionary point, and u = Re A defines its local Lyapunov
exponents. To determine the dependence of the Lya-
punov exponents on 7 it is convenient to introduce an
auxiliary variable A’ = u’ +iv’ = (A + 1) 7 for which
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Re 7,

Fig. 1. Local characteristics of the unstable stationary point of the
unperturbed Mackey-Glass system. (a) Dependence of the first ten
maximal Lyapunov exponents on 7. (b) Kaplan-Yorke dimension
d,, entropy H, and number of positive Lyapunov exponents n;
as functions of 7.

Eq. (3) reads A’ + 47exp(7) exp(—A’) = 0. The de-
sired dependence can be found in a parametric form,

W=u' (") == cott,
7=7(") = f N expla’ ()] /sine),

ReA=u(y =d' (") /(") — 1, (4)

where f~! denotes the inverse function of f(7) =
47exp (7). Depending on the variation interval of the
parameter ¢’ Egs. (4) define an infinite number of Lya-
punov exponents. The kth Lyapunov exponent Re A; =
up(v') is determined by ¢/ € (2w (k—1),27w(k—1)),
k=1,2,..., sothat for a fixed 7 the exponents are or-
dered in descending series A; > A» > A;.... Fig. la
shows the dependence Re A, (7) for the first ten largest
Lyapunov exponents. With the increase of 7 more and
more exponents become positive. This means that the
stationary point becomes unstable to perturbations in
many independent directions. The critical value 7 at
which the kth Lyapunov exponent changes the sign can
be obtained analytically by solving Eq. (3) at v =0,

7t = [arccos(— 1) + 27 (k — 1)]/V15. (5)

The value 7; = 0.471 corresponds to the threshold of
the instability.

The spectrum of the Lyapunov exponents can be
used to determine another local characteristics of
the stationary point such as metric entropy: H =
>_ReA/, where Re Al are the positive Lyapunov
exponents, the Kaplan-Yorke dimension [30]: d, =
n+ 3 ReAy/|Re Ay, where n is the largest
integer for which ReA; + ...+ Re A, = 0, and the
Mori dimension [31], which for this system is simply
equal to the number of the positive Lyapunov expo-
nents n,. The dependences of these characteristics on
7 arc shown in Fig. 1b. As seen from the figure, both
dimensions increase linearly with increasing 7 while
the metric entropy saturates to some finite value. This
is in good qualitative agreement with the correspond-
ing global characteristics of the strange attractor de-
termined numerically from the Lyapunov exponents
averaged over the whole strange attractor (compare
with Ref. [28]). The Mori dimension is even in a
good quantitative agreement. Thus the main global
properties of the strange attractor are reflected cor-
rectly in the local properties of the unstable stationary
point originating this attractor. The simple local anal-
ysis presented here gives insight into why the metric
entropy saturates with increasing 7. As seen from Fig.
la, the increase of 7 leads to an increase of the num-
ber of positive exponents and to a decrease of their
values, so that the sum Y Re A remains constant.

3. Conventional feedback

Let us now consider the perturbed MG system

. 2 _
%ﬂ{%?;—x(r)w(m). (6)
Our aim is to hold the system on an initially unstable
stationary point xo = | using only an extremely small
force F(x,t). In other words, we seek not to change
the position of the stationary point and change only
its local properties in such a way as to make it stable.
Thus the main requirement for the force is that it has
to vanish when the system is on the stationary point,
F(xg,t) =0. Below we consider three different types
of perturbations satisfying this main requirement.
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Let us start our analysis with conventional feedback
[32,33] in which the controlling force is proportional
to the deviation of the system state from the desired
stationary point,

F(x,t) = K(xy— x). (7)

Here K is the weight of the feedback. Linearization of
the system (6), (7) leads to the following equation
for eigenvalues A = u + iv,

A+dexp(—AT) + 1+ K=0. (8)

Although an explicit solution of this equation is im-
possible, one can determine some desired characteris-
tics in a parametric form. The dependence of the max-
imal Lyapunov exponent Re A; on K can be expressed
as follows,

Re Ay =u(v) =In[4sin(er) /e /7,
K=K(v)=—u(v) — 1 —rcot(er). (9)

The parameter ¢ has to be varied in the interval
(0,7r/7). The insct in Fig. 2a illustrates this de-
pendence for various values of 7. It is seen that the
system can be stabilized on the stationary point for
any arbitrarily large value of 7 providing the weight K
is sufficiently large, K > Kj, where the stabilization
threshold Ko is determined by Re A|(Kp) = 0. It is
interesting that the threshold Ky does not increase to
an infinitely large value with increasing 7, although
the number of positive Lyapunov exponents increases
linearly with 7. The dependence Ky on 7 can be
expressed parametrically

7=7(r) = [7 — arcsin( %l') /e,
Ko=Ko(r)=—=1—4dcos{er(v)]. (10)

with the parameter v varying in the interval (0,4).
This dependence is illustrated in Fig. 2a. For large
7, the stabilization threshold saturates to some finite
value. This characteristic resembles qualitatively the
dependence of H on 7 (compare with Fig. 1b). The
correlation between these two characteristics allows
us to conclude that the entropy of the system, i.e. the
sum of the positive Lyapunov exponents is responsi-
ble for the stabilization threshold. In other words, the
stabilization threshold can be considered as a measure
estimating the system entropy. A similar relationship

Fig. 2. (a) Conventional feedback technique. Dependence of the
stabilization threshold Ky on 7. Dots correspond to experimental
values (see Section 7). The inset shows the maximal Lyapunov
exponent Re A; versus the perturbation weight K at various values
of the parameter r: (1) 7= 1,(2) 7=2,(3) 7=3,(4)7=5,(5)
7 =10, (6) 7 =20. (b) Tracking filter technique. The stabilization
threshold Ky versus the cutoff frequency w. of the tracking filter
at various values of 7 (numbers at the curves indicate the same
parameters as in (a)). {c) Delayed feedback technique. Shaded
regions indicate the domains of the stabilized USS in the plane
of parameters 7., K at 7 = 3.

between entropy and synchronization threshold has
been established when investigating the synchroniza-
tion effects in a periodically driven MG system [34].

Stabilization by conventional feedback has the
shortcoming that it requires a priori knowledge of
the position of the stationary point. Below we con-
sider two adaptive stabilization techniques in which
the search for the position of the stationary point
is automatically performed during the stabilization
procedure.

4. Tracking filter

In this section we consider the technique based on
the feedback perturbation that has an inherent degree
of freedom described by an additional variable z,
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F(x,t) =F(x,z{()) =K[z(r) — x],
dz
dr

=w(x—2). (1)

Here K and w, are the feedback parameters. If the
system is on the fixed point x = xy we have 7 =
xo and F(xg,t) = 0. Thus the main requirement for
the perturbation to be zero on the stationary point is
fulfilled. The differential equation describing the z
variable represents a tracking low-pass filter with the
characteristic cutoff frequency equal to w,. It tends to
adapt the z variable to the steady state of the system
x = xo. Linearizing Eqs. (6), (11) close to xg = 1
one obtains

A+dexp(—AT) + 1+ KA/(A + @) =0. (12)

The dependence of the stabilization threshold Ky on
w, is determined by

w.=wc(v)=cvlv—4sin(er)]/[ 1+ 4dcos(er) ],

Ko = Kp(v) = -1 +4cos(rr)][wf(1;)/pz+ 1.
(13)

with ¢ € (arccos(—%)/r, [27m — arccos(fi)]/r)\
and is shown in Fig. 2b for different values of 7. The
domain of stabilizing the stecady state is defined as K >
Ko(w:). At w. — 0, the threshold of the stabiliza-
tion coincides with that corresponding to conventional
feedback. The advantage over conventional feedback
is that this technique is adaptive. The filter provides
an automatic tuning of the perturbation to the USS by
tracking the variable x(f) and assures the stabiliza-
tion even under drift of the stationary point. The char-
acteristic adaptation time is determined by 1/w.. For
w. — 00, this technigue is equivalent to the derivative
control technique [20,22] since in this case the feed-
back force F(x.t) becomes proportional to dx/dr.
However, large values of w, require a large value of K
and the technical implementation becomes difficult.

S. Delayed feedback

Let us consider now another adaptive control tech-
nique based on delayed feedback,
F(x,t) = F(x,x(t —7.)) = K[x(t - 7.) — x].
(14)

Originally this technique has been proposed to stabi-
lize unstable periodic orbits of the strange attractor
[7]. If the delay time 7. coincides with the period of
some unstable periodic orbit, perturbation (14) turns
to zero on this orbit and hence preserves it unper-
turbed. This perturbation can also stabilize stationary
points [7]. Since a stationary point has no character-
istic period the delay 7. can be chosen arbitrarily: the
main requirement F(xo,!) = 0 is satisfied for pertur-
bation ( 14) at any 7.. Linearization of Egs. (6), (14)
close to xo = 1 results in the following eigenvalue
problem,

At+dexp(—AT) + 1+ K[l —exp(—ATc)] =0. (15)

Solving this equation with respect to 7. and K at
Re A = 0 one obtains the parametric equations

2 4 1
Te=7(0) =~ [arctan(M> + k77'j|,

v v —4sin(er)

Ko = Ko(v) = 23007 2, (16)
sin[vT.(v) |

defining the stabilization domains of the stationary
point in the plane of the parameters 7., K. The do-
mains are presented in Fig. 2c for the fixed value of
the parameter 7 = 3. Due to interaction between the
resonances related to two characteristic delay times 7
and 7. the picture has a complex structure. With the
increase of 7 it becomes more and more complicated.
There are many small “islands™ of stabilization in the
“sea” of unstable behaviour. Nevertheless, there al-
ways exist two comparatively large regions of the sta-
bilization located at small 7. and at 7. =~ 7. For small
Tc, the feedback (14) becomes proportional to dx/dr,
and we have again coincidence with the derivative con-
trol technique [20,22]. This case requires again large
values of the parameter K. Most suitable for experi-
ment is the “resonance” region 7. =~ 7. This region
is sufficiently large and stabilization can be achieved
with small values of the parameter K.

6. Experimental

Experiments have been performed with a specially
designed electronic oscillator [35] (Fig. 3, top) imi-
tating the behaviour of the MG system. The circuit of
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Fig. 3. Block diagram of the MG electronic analogue (top) and
schematic diagrams of the control circuits for the three different
methods. (a) Conventional feedback technique. (b) Tracking filter
technique. (¢) Delayed feedback technique.

the oscillator includes a tunable delay line, a nonlin-
ear semiconductor device ND, and a low-pass filter.
The time delay 7 can be tuned from 0.3 to 3 ms in a
frequency range of 0-3 kHz. The low-pass filter con-
tains a resistor Rp = 3 k() and a capacitor Cy = 0.1

uF, so the time constant RyCy is 0.3 ms and the cutoff

frequency is 0.5 kHz.

Due to the time delay T the circuit exhibits high
dimensional chaotic behaviour characterized by a cor-
relation dimension as high as 7 for the largest delay
T = 3 ms. The similarity of the developed electronic
oscillator with the MG system has been shown in our
previous paper [35].

To test the stabilization methods discussed in Sec-
tions 3, 4, and 5 experimentally three different control
circuits shown in Figs. 3a-3c respectively, have been
arranged. The relationship between the dimensionless
variables (also parameters) introduced in Egs. (6),
(7), (11), (14) and the experimental ones is given by

X = U‘// Uy, t= I/R()Cn.

= UC/'U().

7 =T/RyCp.

K= R()//R, we = R()C()/RC.

x(t=7)=Ut =T Uy, 7. =T./RoCy.

Here Up is the output voltage corresponding to the
USS. For the given oscillator Uy = 4 V. The output
signals U () and/or U(r—T). as well as the difference

U (V)

3 4
U(t-T) (V)

.| (d)
target Uy=4 V
+
s A
= 3 S
S o ! T=3 ms
ON )
. (t=10)
1 I T
U (V)

Fig. 4. Experimental phase portraits. (a) Unperturbed chaotic
system. (b) System under control. The tracking filter technique
is applied. R =600 Q. C =5 uF (K =5, w:=0.1).

voltages Uy — U(r) or U (1) = U(t) or U(t —T¢) —
U(t) have been taken by means of analog-to-digital
converters. To register the transients when stabilizing
the USS the converters have been triggered at r = 0,
meanwhile the control circuit has been connected to
the oscillator with some delay, say at ¢ = 25 ms and
disconnected at + = 75 ms. So the feedback pulse
duration is typically kept at 50 ms.

7. Experimental results and discussion

Let us start with some general observations, namely
with the phase portraits (Fig. 4). For the uncontrolled
oscillator the phase portrait shown in Fig. 4a is a typ-
ical one of the unperturbed MG model [28]. Mean-
while Fig. 4b illustrates the stabilization effect. The
feedback perturbation when switched on results in sev-
eral transient loops of the phase trajectory ending at
the target Uy = 4 V. The individual trajectory depends
on the initial point at which the feedback is switched
on, however stabilization of the USS can always be
achieved.

We have measured the threshold values of the per-
turbation weight K for all the techniques considered
and have found them in excellent agreement with the
theoretical predictions. An illustration is presented in
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Fig. 5. Experimental waveforms of the main observable U(t)
illustrating three different control methods. 7 = 3 ms (7 = 10).
(a) Conventional feedback method. R =600 Q, Uy =4V (K =5,
xo = 1). (b) Tracking filter method. R = 600 Q, C = S uF
(K =35, w. =0.1). (¢) Delayed feedback method. R = 1.5 k(2.
T.=3ms (K=2,7.=10).

E ’ M N l’
0 ———
w ON OFFi\j\/
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T T T T T T I T LT T T T T T T
0 20 40 60 80 ms

Fig. 6. Experimental waveforms of the difterence current F(r)
for the tracking filter technique. R =600 Q. C =5 uF (K =5,
we =0.1). (a) Unlimited perturbation. (b) Perturbation is limited
at the level of 0.3 mA (10%).

Fig. 2a, where the experimental dots Ky are plotted
as a function of 7 for the conventional feedback tech-
nique.

Fig. 5 demonstrates the temporal evolution of the
main observable U(r). It rapidly converges to the
steady state value Up = 4 V in tens of milliseconds
after the feedback perturbation has been switched
on (t = 25 ms). Even after the feedback has been
switched off (7 = 75 ms) the state remains steady for
a while before new oscillations arise. The latter fact
proves that we have really stabilized an “intrinsic”
USS of the given system.

The above techniques are also characterized by the
feedback current F'(t) (Fig. 6a) calculated from the
difference voltage: F = [U;(¢) — U(t)]/R with U; =
Up or Us(t) or U(t — T.) depending on the method
applied. The F is very large when the feedback is off
{t < 25 ms). It is rather noticeable at the beginning

of the feedback pulse (¢ 2 25 ms), but becomes ex-
tremely small (F =~ 1 wA) at the end of the feedback
puise (¢ =~ 75 ms). Such a value of F is only 0.1%
of the inherent ac or dc current U/Ry = 1 mA in the
oscillator. For longer feedback pulses, the F' still de-
creases approaching noise level.

In addition, we have carried out an experiment with
a feedback force of a limited amplitude excluding large
transient perturbations. We have limited the perturba-
tion not to exceed 10% of its maximal value (Fig.
6b). This results in longer transients but stabilization
is still achieved. The influence of the amplitude limi-
tation on the transients has been considered theoreti-
cally in Refs. [7,13].

Most of the experimental illustrations in this Letter
are presented for the analog circuit at 7 = 3 ms, that is
at the dimensionless delay 7 = T/ RoCp = 10. Similar
results have been obtained in the same way for other
delays 7 as well.

In summary, all the techniques considered, namely
the conventional feedback, the tracking filter and the
delayed feedback are well applicable for stabilizing
the USS in an electronic analog of the MG system.
All of them need similar weights K for the feedback
force to obtain acceptable rates of convergence. The
simplest ones from an experimental point of view are
the conventional feedback and the tracking filter tech-
niques. In our opinion the latter is preferable. It does
not require knowledge of the value of the USS due
to its adaptive features. The delayed feedback method
is adaptive as well. However it is more complicated
since it needs an additional tunable delay line. Nev-
ertheless, some features of this technique can be use-
fully employed. For example, the “resonance” stabi-
lization of the USS at 7, =~ T can be used to estimate
T in a chaotic dynamical system with delay in case
this inherent delay parameter is unknown.

8. Conclusions

Theoretical and experimental analysis shows the ef-
ficiency of the feedback techniques to stabilize the
USS of the MG system and its electronic analog driven
into regions of hyperchaotic oscillations. Although the
investigations have been performed for a specific sys-
tem we expect similar results for other systems de-
scribed by delay differential equations.
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The problem considered here represents one of the
simplest cases of a very complex problem of control-
ling high dimensional chaos in infinite dimensional
systems. The theoretical attraction of the problem
considered in this Letter is that it admits an analytical
solution. We have obtained analytically the stabiliza-
tion domains for three different techniques based on
conventional feedback, tracking filter, and delayed
feedback. The most convenient from the experimental
point of view is the technique based on the tracking
filter. We have shown also that the local entropy of
the stationary point is responsible for the value of the
stabilization threshold.
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