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Abstract

We present a novel technique for stabilizing unstable periodic orbits of chaotic systems. It uses a continuous feedback loop
in the form of the difference between an actual and a delayed output signal of the system with a variable delay time. This
time is chosen to be equal to the interval between the last and the kth previous maximum of the output signal and is changed
at every kth maximum. During the procedure, the delay time asymptotically tends to the period of the period-k unstable
periodic orbits and the control signal vanishes. The method is illustrated with the help of the Rossler ordinary differential

equations and the Mackey-Glass delay differential equations.

Chaotic systems are characterized by their extreme
sensitivity to small perturbations in their initial condi-
tions. That inherent feature, known as the “butterfly ef-
fect”, often is troublesome or even unwanted in many
cases of practical importance. An efficient scheme to
control chaos has been proposed by Ott, Grebogi, and
Yorke (OGY) [1]. The key precondition was that the
typical chaotic attractor embeds an infinite number of
unstable periodic orbits (UPOs) of distinct periods
Ty. They can be stabilized by an only small, carefully
chosen, feedback perturbation applied to some system
parameter available for external adjustment. The OGY
method is a very general one. It does not require any
a priori analytical knowledge of the system dynamics
and has been successfully applied to various physical
experiments including a magnetic ribbon [2], a spin-
wave system [3], a chemical system [4], an electric
diode [ 5], laser systems [ 6], and cardiac systems [7].

* Corresponding author.

Any experimental application of the OGY method
necessitates permanent computer analysis of the state
of the system. The changes of the parameter, however,
are discrete in time, since the method deals with the
Poincaré map of the system. This makes the method
touchy to noise. Small noise gives rise to occasional
bursts of the system directing to the region far away
from the periodic orbit to be controlled. These bursts
are more frequent for large noise [1]. Various modi-
fications of the OGY method considered in Refs. [4-
11] are also discrete in time (see also Ref. [12] for
a survey).

An alternative approach based on a continuous-time
control has been proposed by one of us [ 13-15]. The
method deals with a chaotic system which can be pre-
sented by a set of ordinary differential equations
dy dx
5 PO +F@), = =00.x). (1)
Imagine that Egs. (1) are unknown, but some scalar
variable y(7) can be measured as a system output.
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Vector x describes the remaining variables of the sys-
tem that are not available or not of interest for obser-
vation. F(¢) denotes an external continuous-time per-
turbation. The idea behind it is to construct this per-
turbation in such a way that it vanishes when the sys-
tem moves along the desired UPO. In other words, the
perturbation does not have to change the desired UPO
of the system, but only the corresponding Lyapunov
exponents in such a way that the orbit becomes stable.
Different types of perturbation satisfying this require-
ment have been considered. One approach [13,14]
is to use the conventional feedback loop [16] with
the control signal being proportional to the difference
D(t) = y(t) — y(t), where y.(t) is the reference
signal which corresponds to the desired UPO of the
system, y:(t) = yi (1), ye(t) = yp (¢t + T;). The peri-
odic signal y,(t) corresponding to the period-k UPO
can be reconstructed from the chaotic output y(r) of
the unperturbed system by a standard method of delay
coordinates. To ensure small values of the perturba-
tion at all times and to avoid multistability of the con-
trol, the perturbation can be restricted in the following
manner [13],

F(t)=~Fp, KD(t) < —Fy,
=KD(t), —Fy<KD(1) < Fy,
= Fy, KD(t) > F, (2)

where Fp is a saturating value of the perturbation and
constant K the characteristic weight. An experimen-
tal realization of this approach on the basis of an
electronic double-scroll oscillator has been given by
Ref. [17].

Another approach to stabilize UPOs is to use the de-
layed output signal of the system as a reference signal:
D(t) = y(t—7)—y(t) [13,14]. This perturbation also
satisfies the main requirement, namely, that the per-
turbation vanishes on the desired orbit when the delay
time 7 coincides with the period of this UPO, 7 = T;.
The latter method deserves strong interest from an ex-
perimental point of view, especially for fast dynamical
systems. It does not require any computer analysis of
the state of the system and can be simply implemented
in various experiments by a purely analog technique.
The method has been successfully applied to nonau-
tonomous [ 18,19] as well as autonomous [20] elec-
tronic chaos oscillators and to a laser system [21].

Experimentally, stabilization is achieved by fitting
two parameters 7 and K in such a way as to minimize
the amplitude of the perturbation F(t). The method
is not very sensitive to the variation of the weight
K. If 7 is chosen correctly, there exists a finite inter-
val of values of K providing stabilization [13]. How-
ever, an experimental fitting of the delay time 7 is
more complicated and requires a very thorough adjust-
ment, because the amplitude of the perturbation has
a resonance-type dependence on 7 with pronounced
minima at 7 coinciding with the periods of the UPOs
[ 13]. To provide the small amplitude of the perturba-
tion, the delay time 7 has to be fitted as close as possi-
ble to the period T} of the desired UPO. The search for
the correct value of 7 is particularly difficult for au-
tonomous systems, because the periods of their UPOs
are a priori unknown.

To overcome this problem, we suggest to use the
feedback with the variable delay time 7,

D(t) =y(t—1,) — y(1). (3)

We suppose that the delay time 7, can be changed
during experiment in a discrete way. To stabilize the
period-1 UPO, we choose 7, to be equal to the dis-
tance between successive maxima of the output signal
¥(t) and change it at each maximum, 7, = At:n’;)x =
gl — =D where ¢ = t{") defines the moment the
nth maximum appears in the output. Our numerical
application of this algorithm to various mathematical
models shows that the delay time 7, converges to the
period of the period-1 UPQ, and this orbit becomes
stable. The method can be extended to the UPOs of a
higher period. The period-k UPO can be stabilized by
choosing 7, equal to the interval between k neighbor
maxima (7, = £ — "%} of the output signal and
varying it at each kth maximum.

Below, we illustrate the application of the method
to two models. The first model is the Rossler system
described by a set of three ordinary nonlinear differ-

ential equations {22],

dx dy

—_— Y — —_ = ) F t .

% e x+ay+ F(t)

—dj =b+z(x—c). (4)

Here the controlled perturbation F(¢) in the form of
Eqgs. (2), (3) is applied to the second equation of the
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Fig. 1. Results of stabilizing the period-2 UPO of the Rdssler
system (Eqgs. (4)) at a =02, h =02, ¢ =57, K =02, and
Fy = 0.1. (a) The x~y phase portrait of the Rossler system. The
dashed and solid lines denote the uncontrolled chaotic orbit and
the stabilized period-2 UPO, respectively. (b) Dynamics of the
distances between every second maximum of the output signal
before and after switching on the control. The control is activated
at n = 40. (c). (d) The transient dynamics of the output signal
and the perturbation, respectively. when control is activated.

system (4), i.e., the y variable can be interpreted as
an output. Similarly, the control can be achieved by
perturbing the first or the third equation of the system
(4). The control of the Rdssler system by the x or z
variable is, however, less efficient [15].

The results of stabilizing the period-2 orbit are pre-
sented in Fig. 1. Fig. 1a shows the x-y phase portrait
of the chaotic attractor and the stabilized period-2 or-
bit. The dynamics of the distances between the max-
ima of the output signal before and after switching on
the control is presented in Fig. 1b. Lastly, the transient
dynamics of the output signal and that of the perturba-
tion after activating control are shown in Fig. Ic and
Fig. 1d, respectively. The distances between every sec-
ond maximum of the unperturbed system change ran-
domly. The perturbation in the form of Eqs. (2) and
(3) leads to an asymptotical convergence of these dis-

tances towards the constant value equal to the period
of the period-2 UPO of the system. The amplitude of
the perturbation gradually decreases and the desired
UPO becomes stable.

The example above is based on a very simple sys-
tem of three ordinary nonlinear differential equations.
The fluctuations of At,(,;;)x in the unperturbed case are
small around the period length of the desired UPO
(Fig. 1b). One may suspect that the method works
only for such simple systems having a small disper-
sion of the distances Atg’;x. However, the second ex-
ample shows that the method can be successfully ap-
plied to more complex, infinitely dimensional systems,
described by delay differential equations. As an exam-
ple of such a model, we have considered the Mackey-

Glass equation [23]

‘:i—i=%y)f,f(7%~cy<r>+m> (5)
at a =0.2, b =10, ¢ = 0.1. The unperturbed system
has an inherent delay time 74 which is used as con-
trol parameter. One remarkable feature of the system
is that the dimension of its strange attractor increases
monotonically with 74 [24]. When varying this pa-
rameter, one can generate strange attractors with an
arbitrarily large dimension. In general, there is no ob-
vious relation between the delay 74 and the character-
istic frequencies of the unperturbed system as seen in
the power spectrum. There is also not an explicit rela-
tion between any of these quantities and the periods T
of the UPOs. Because of an infinite number of degrees
of freedom related to the delay term, the search for the
UPOs and their periods is nontrivial in that it makes
difficulties for the application of the conventional con-
trol techniques. Such a problem does not exist for the
control method suggested, since the controlled UPO
and its period are determined automatically during a
control procedure. Results of stabilizing the period-1
UPO are presented in Fig. 2. Unlike the first exam-
ple, the dispersion of Azfri'a)x between the maxima of
the output signal turns out to be large. Surprisingly, in
spite of that, control is successful.

The results presented in Fig. 2 are calculated at
74 = 30 corresponding to a dimension of the strange
attractor d ~ 3.5. We have also stabilized the period-
1 UPO in the hyperchaotic regimes with significantly
higher dimension of the strange attractor (up to d =
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Fig. 2. Results of stabilizing the period-1 UPO of the
Mackey-Glass system (Eq. (5)) at @ = 0.2, b = 10, d = 0.1,
74 =30, K=02, and Fy = 0.02.

10). The regimes are obtained via increasing the delay
time 74 up to 100 [24].

In conclusion, we have suggested a delayed feed-
back law with a variable delay time, in order to stabi-
lize the UPOs of chaotic systems. The method does not
require any preliminary information about the UPOs.
The form of the desired UPO and its period are de-
termined automatically during the stabilization pro-
cess as a consequence of the self-adapted nature of
the feedback. The method works not only for low-
dimensional systems described by ordinary differen-
tial equations, but also for an infinitely dimensional
system determined by delay differential equations. It
even can stabilize the UPOs in hyperchaotic high-
dimensional strange attractors. Due to the coincidence
of the adaption and the control procedure, the method
continues to work under a drift of any system parame-
ter. Moreover, one needs no adjustment when applying
the method to a set of kindred systems the parameters
of which are scattered.

The research described in the present publication
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